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INTRODUCTION

In this work we introduce and study a highly 
simplified model o-f X—ray burster or recurrent nova (c-f.
[4] , £5] , [ój , [7) ) , with spherical simmetry, in order to
describe the luminosity -f 1 uctuat i ons o-f these astronomical 
objeets. The model consists on a central spherical nucleus
o-f neutronic density (a neutrón star) sorrounded by a 
fermion gas, enclosed in a spherical dust shell , in 
thermical equilibrium with the gas- The shell emits black 
body radiation, and the luminosity -f 1 uctuat i ons are caused 
by the oscilation o-f the shell radius. The gravity -forces 
and the pressure o-f the radiation forcé make that the shell 
can be oscilíate if the relevant parameter lies between 
certain bounds (other wise the shell wi11 collapse into the 
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neutrón star or wi 11 be ejected); in this case, the internal 
radiation density it supposed worthless with respect to the 
external. We shall compute these bounds and show that, in 
this problem, a primary bi furcation exists when we describe 
the Solutions in terms o-f the ratio of the shel 1 mass and 
the gas mass.

2. THE SHELL DINAMICS

We shall suppose that the gas mass is conserved 
and that the density of the gas is constant, therefore the 
gas density is:

n mp(R) = — ’~-2- 
41T R3

where nig is the mass o-f the gas and R the radius o-f the 
shell. The density will obey the state equation of a perfect 
gas P = P . K.T , where P is the pressure, T the absolute 
temperature and K the general gas constant. We shall 
consider that when the shell oscilate the gas undergoes 
adiabatic evolutions P = a . p , where a is determined by 
the initial conditions of the motion.

In order to simplify the equations we introduce 
the following scale factors, a space scale RQ and a time 
scale tQ:

(1.a)

(l.b)
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where M is the mass o-f the neutrón star, d = , b is -^2.
M Cwhere cr is the Ste-fan-Boltzmann constant, and c is the 

light velocity, and 8 a parameter de-fined by

where G is the universal gravitati onal constant- Using R and 
tQ as units o-f lenght and time r espect i vel y, the dynamical 
equation o-f the shel 1 is:

>í " = -f (x ,>í ' ) (3)

where x is the shell radius and the primes are time 
derivations- Using classical mechanics it is easy to show 
that

(4.a)

Also i-f we use the post-newtonian approximatiDn (c-f.eg. ! si ) 

we obtain the carrected -functian: 

where c is the light velocity, and c is the adimensional ized 
light velocity.
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In paper5 [lJ and [2j we showed that the Solutions 
o-f this equatidn -fits quite wel 1 the behaviour o-f the 
astronomical objects we study -X-ray bursters and recurrent 
novae- i-f we use reasonable physical parameters.

In this paper we are interested in the study o-f 
the mathematical properties o-f eq. (3) in the phase space,
and to see how we can obtain a periodic luminosity.

3- PRÜPERTIES GF THE DYNAMICAL EQUATION

Frcrr. equations (4.a) and (4.b) we deduces

Property 1 I-f -f ( 6=0 , >: , x ' ) = T (*,>:')  then
x " = -f 0(>: ,>í ' ) (6)

i,s the classical Newtonian equation o-f motion o-f the shel 1 . 
Al so:

Property 2 Via the transíormation

wher e

<\jfunction f(6;x,x') becomes function -f0(>:,x'). Therefore, the 
singular points o-f eq. (4.b) can be obtain solving the
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classical problem, i.e. eq. (4.a). Besides this equation has
a simple analitical solution.

Therefore it is easy to verify that:

Property 3 Equation (4.a) has at most two real singular 
points, a port x (ti ) and a center x (£3) given by:

r±W. = l.rfíy) fi ± (i - h(y)) ^ ]
4 ' '

wher e

+singular points x as a
and ti =0.105456.C

Figure 1 shows the real
•function of £1 . £1 is a bifurcation point for ti. because ifC
£2 >fi there are no re?a.l singular points and the solution of 
eq. (4.a) yield a collapse of the shell. Solution x+( ti, ) 
corresponde to a center, a stable singular point, which goes 
to 1 when £3= O (in this case there is no radiation term in 
eq. (4.a)) x+(£3) lies between 3/4 and 1. (i.e. x + ( ^c) and 
x+(O) respect i vel y) . On the otherhand x (£2) corresponds to a 
port and lies between O and 3/4 (i.e. x (0) and x ( )
respectively).
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Figure 1: Singular points how 4. function, for 6= 0.

Bol. Asoc. Arg. de Astr.42



Figure 2.a.: Phase diagraa for ü - 0 (i.e. no radiation). All trayectorias are
5table oscilation.

Figure 2.b.: Phase dia9ra. For 41-0,1 (i.e. « <? * 0.1054Í). There are■« ooints x+ and X" . For 0,67 < X < 0,92 the osciiations tay occur. For X outside this
interval the Shell alaays collapse.
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Figure 2.C.: Phase diagraa for SI =0.12 (i.e. SI>SIC = 0.10546). There are no singular points. ftll trayectorias yield the sheli collapse.

In -figures (2.a) , (2,b) and (2,c) , we show some
orbits for 5 =0 and dif-ferent valúes o-f SI .

In Figure 3 (break line), we represent the bands 
where the acceleration keeps its sign i.e.,
- -for SI < Í2 is
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The b i f urcat i on point, de-fined by , yields an
upper bound to the ratio mg/rrig, i f we want that the shel 1 
□sci1 ate.

(ms/mg)° <
243 K1* d
4 ^ G3M2nC

From properties 2 and 3 we obtain,
Property 4 When 6*0  the real singular point o-f eq- (4.b)
are

( Í2 , ó ) = (1-*-6 ).>í — (fi)
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There-fore the bi-furcation point is now 
ÍÍC ( 6) = (1+6 ) ^ • fic

In Figure 4 we represent the curves x-(fi , 5 ) -for several 
valúes o-f ^.

Figure 4: Singular points as a functions of fi for different 6 .

space -for
In Figure 3 (complete line) it is shown the 
fi <fic ( 6) where the root.s o-f x" are de-fined

phase
by
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Now we can compute the oscilation period:

Property 5 The oscilation period around the center when 6 = 
Gis

For 6^0 i-f we use trans-f orrnati ons (7) the correspondi nq 
time trans-f ormati on is t ____ ^ t where,

( 7 . d )

from this trans-f ormat i on (bound around of 
obtain the period -for <5^0,

( , ó ) ) , we can

In Figure 5 we represent the semiperiodo o-f 
oscilation as a -f une t ion of -O. and 6 -

This complete the study o-f our equations.
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4. LUMINOSITY

The luminosi ty o-f a star is de-fined by the energy 
radiated by unit of time; considering the spherical symmetrv 
of the shell and that the radiation 1 aw obeys the visión o-f 
a black body the luminosity di mentíonless is

being L(t) 
by

where IL is the scale -factor de-fined
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In the same way we introduce the temperature,

In the Figure 6, the periodical f luctuation o-f 
luminosity and the shell temperature for classical 
oscilations around the center have been shown (L(t) and T(t) 
correspand to "loop a" in Figure <2.b>).

Figure 6: Dependsice o-f the luminositv L in function o4 time
t, ciid the temperature T with the time t.
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