THERMOMECHANICAL OSCILATIONS IN X-RAY BURSTERS AND RECURRENT
NOVAE
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ABSTRACT: A classical and post-newtonian model of X-ray

burster and recurrent nova is studied.

A bifurcation point is found. The condition for
oscilating behaviour and the corresponding period are
computed.

INTRODUCT ION

In this work we introduce and study a highly
simplified model of X-ray burster or recurrent nova (c.f.
[4], [5], [6] ’ [a ), with spherical simmetry, in order to
describe the luminosity fluctuations of these astronomical
objects. The model consists on a central spherical nucleus
of neutronic density (a neutron star) sorrounded by a
fermion gas, enclosed 1n a spherical dust shell, 1n
thermical equilibrium with the gas. The shell emits black
body radiation, and the 1luminosity fluctuations are caused
by the oscilation of the shell radius. The gravity forces
and the pressure of the radiation force make that the shell
can be oscillate if the relevant parameter lies between

certain bounds (other wise the shell will collapse into the
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neutron star or will be ejected); in this case, the internal
radiation density it supposed worthless with respect tao the
external. We shail compute these bounds and show that, in
this problem, a primary bifurcation exists when we describe
the soclutions in terms of the ratio of the shell mass and

the gas mass.
2. THE SHELL DINAMICS

We shall suppose that the gas mass is conserved
and that the dencsity of the gas is constant, therefore the
gas density is:

3 _m

p(R) = = 2

41 R3
where mg is the mass of the gas and R the radius of the
shell. The density will obey the state equation of a perfect
gas F = P.K.T , where P is the pressure, T the absolute
temperature and K the general gas constant. We shall
cansider that when the shell oscilate the gas undergoes
adiabatic evolutions P = o . p5/3, where o is determined by
the initial conditions of the motion.

In order to simplify the equations we introduce

the following scale factors, a space scale Ry and a time

scale to:

1/ 1/3 1/3
R = b 3 M ' d . a (1.a)
0 49K4 Q
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38 Bol. Asac. Arg. de Astr.



. m . v
where M is the mass of the neutron star, d =—ﬁg s b is ﬂ% ’
where ¢ is the Stefan-Boltzmann constant, and c¢ is the

light velocity, and ® a parameter defined by

Q- A ,.P__,.@E."lém_i 3 (2)
243 K4 d m

g9

where G is the universal gravitational constant. Using kR and
to as units of lenght and time respectively, the dynamical

equation of the shell is:
" o= flx,x") (3
where x is the shell radius and the primes are time

derivations. Using classical mechanics it is easy to show

that

FOLN) = F_(x,x") = f_(%) = —mte + b (4.a)
2

Also if we use the post-newtonian approximation (cf.eg.! 8|)

we obtain the corrected function:

' w12
0 = f(asxoxt ) <L (10 3 ex2)e([a+(1- E) /AL L 25 L
fx,x') = f(8;x,x") " (1- 7 ox )+(L +( p ) jx3 PRI
(4|b)
where
-G, (4%K)q/3 ,M2/3,($2)1/3, 1 _ 1 (S)
¢ = = 7 - - "2
c? pi43 a a C

where c is the light velocity, and ¢ is the adimensionalized

light velocity.
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In papers [1] and [2] we showed that the sclutions
of this equatiogn fits quite well the behaviour of the
astronomical objects we study —X-ray bursters and recurrent
novae— if we use reasonable physical parameters.

In thi1s paper we atre interested in the study of
the mathematical properties of eq. (3) in the phase <space,

and to see how we can obtain a periodic luminasity.
3. PROFERTIES OF THE DYNAMICAL EQUATION
Frem equations (4.a) and (4.b) we deduce:

Property 1 If f(8=0,x,x") = £ _(x,»"') then
XMoo= S, (&)

is the classical Newtonian equation of motion of the shell.
Also:

Property 2 Via the transformation

"N o
> X . 2 > 2 (7.a)
where
. 1 . 3/8 8x ' 2 .
Py d+(1.—6x'2)1/2
) 1/2 113
v _ (1 -8/ x'2) "(1-3/4 6x') (7.b)

(6 + (1 - 8/8x'2) t2 )“

, o
function f(d;%x,%°) becomes function fo (2,x ). Therefore, the

singular points of eq. (4.b) can be obtain solving the
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classical problem, i.e. eq. (4.a). Besides this equation has
a simple analitical solution.

Therefore it is easy to verify that:

Property 3 Equation (4.a) has at most two real singular

points, a port Q) and a center T ) given by:

R il RCR IRy

where
giyv) = — (1 + By)1/?
hey) = 16 . 7
gty [gy) -1
1/3 1,2 1,3 1/2 1/3
Q Q Q
y=(f%) {hra-Z 7y -0 )
. €
and QC = 0.103456.
+
Figure 1 shows the real singular points x as a

function ot Q. QC is a bifurcation point for Q, because if

Q }QC there are no real singular points and the solution of
eq. (4.a) vyield a collapse of the shell. Solution SRR EID
corresponds to a center, a stable singular point, which geces
to 1 when Q= 0 (in this case there is no radiation term in
eq. (4.a)) x () lies between 3/4 and 1. (i.e. x+(QC) and
w¥ () respectively). On the otherhand x (2) corresponds to a
port and lies between © and 3/4 (i.e. x (0) and x (9.)

respectively).
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Figure 1: Singular points how Q function, tor &= 0.
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Fiqure 2.a.: Phase diagras for £ = 0 (j.e. no radiation}. All trayectories are
stable oscilation. :
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Figure 2.b.: Phase diagras for Q=01 (i.e. < = 0,10546). There are tuo_sin?u}ar
points xt+ and X~ , For 0,87 (X ( 0,42 the oscilations may occur. For X outside this

interval the shell always collapse.
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Figure 2.c.: Phase diagras for Q = 0,12 li.e. c
singular points. All trayec{nries yield the's

In figures

orbits far 6§

In Figure 3 (break

where the acceleration
- for Q< Q ig
C
P18 if
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<0 1f

- for Q F'Qc is x" < 0

44

(2.a),

= (0 and different wvalues of

beeps

(2,b)

124"’

and

line),

~
(2,c),

Q.

= 0,10544). There are no
hell collapse.

we show

we repre<sent the

its sign i.e.,

e[ ¥ Q)3 \+fg)]
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Figure 3: Representation of the bands where the acceleration keeps differeats signs,

The bifurcation point, defined by QC , vields an
upper bound to the ratio mg/mg, if we want that the shell
oscilate.

3, 243 K+ d
(mg/mg) ey S 1 G3M2

From properties 2 and 3 we obtain,

Property 4 When § # 0 the real singular point of eq. (4.b)

are
)
vt (0,6) = (1+8) T
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Therefore the bifurcation point is now
Rc (& = «1+6)%. o
In Figure 4 we represent the curves xt(Q,ﬁ ) for several

values of 6.

1.2

1

|

|

I

!
I |
| !
t !
y 1
| !
1 |
| |
| '
| I
| )
| |
|

|
|
:
]
f

o QM) .(2)
02 04 06 08 10 12 1 1 18 20 22
n

Figure 4: Singular points as a functions of U for different &.

-

In Figure 3 (complete line) it is shown the phase

space for Q <Q: (68 where the roots of x" are defined by
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xf (x7,0,6) = xt(hy 81 -84 x7) /7
1 - 3/48 x'?

Now we can compute the oscilation period:

Property 5 The oscilation period around the center when § =
0 is

21

#a) 1 3 4
m [3)( - 2% - 69}x=x+(s2)

For 6# O if we use transformations (7) the corresponding

V)
time transformation is t  — t where,

=t (1-3/4e8x

6+ (1= Jax2)i/2 )32

)Bf? - (7.d)

. . .+
from this transformation {(bound around of = ({,8)), we can

obtain the period for § # 0,

n
Py = #F (& .o+ 67F

In Figure 5 we represent the semiperiods of
oscilation as a function of Ll and ¢ .

This complete the study of our equations.
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4. LUMINOSITY

The luminosity of a star is defined by the energy
radiated by unit of time; considering the spherical symmetry
of the shell and that the radiation law obeys the vision of

a black body the luminosity dimentionless is

1
L(t) = AN
x (t)
being L(t) =-J¥L£l where ﬂ.o 1is the scale factor defined
by lo
4
- oK 1/3 .8/3 2/3 2/3 Q
“-0 —?.(411) . 3 , d M -3
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In the same way we introduce the temperature,

T = T ]

where—ro is the scale factor,

)2/3 |<5/3 2/3

t

Q|0

T, - (2

In the Figure 6, the periodical fluctuation of

luminosity and the shell temperature +ar classical
pscilations around the center have been shown (L(t) and Tt}

correspond to "loop a" in Figure (2.b)).
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Fiqure é: Depende.ce of the luminositv L 1n function of time

t, ¢ud the temperature T with the time t.
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